Showing 49–60 of 268 results
-
- Low Melting Point: Excellent for low-temperature soldering and thermal interface materials.
- Thermoelectric Properties: Exhibits promising performance in energy harvesting systems.
- Customizable Particle Size: Available in various sizes tailored to application needs.
- High Purity: Ensures reliable performance in precision applications.
- Environmentally Friendly: Contains no lead, making it suitable for eco-friendly applications.
-
- High Purity: BiSb pellets are typically available in high purity (99.9% or higher), ensuring the production of high-quality thin films free from contaminants.
- Thermoelectric Efficiency: The combination of Bismuth and Antimony provides exceptional thermoelectric properties, which is crucial for enhancing energy conversion efficiency in thin films.
- Uniform Evaporation: The spherical or irregular shape of the pellets allows for even melting and vaporization during the evaporation process, resulting in uniform deposition on substrates.
- Low Melting Point: BiSb alloys have a relatively low melting point, making them easier to handle in evaporation systems without the need for extreme temperatures.
-
- High Thermal Conductivity: Excellent ability to dissipate heat, ideal for high-temperature applications.
- Electrical Insulation: Acts as an efficient insulator while maintaining high thermal conductivity.
- Chemical Stability: Resistant to chemical corrosion, oxidation, and high-temperature degradation.
- Lubrication Properties: Provides natural lubrication in extreme environments, reducing friction and wear.
- Customizable Particle Size: Available in various sizes, tailored for specific applications.
-
- High Thermal Conductivity: Excellent heat dissipation properties.
- Electrical Insulation: Exceptional dielectric strength, ideal for electronic applications.
- Chemical Inertness: Resistant to oxidation and most chemicals.
- High Purity: Available with ≥99% purity for consistent and reliable performance.
- Lubricating Properties: Superior lubricity, even at high temperatures.
- Customizable Particle Sizes: Nano (<100 nm) and micro (1–50 µm) options available or customized.
-
- High Hardness: Carbon, especially in its diamond-like form, is extremely hard and wear-resistant, making it suitable for protective coatings.
- High Melting Point: Sublimation point of carbon is around 3,650°C, allowing its use in high-temperature deposition processes.
- Good Electrical Conductivity: Carbon is conductive, making it suitable for electronic applications.
- Chemically Inert: Carbon’s chemical stability ensures it remains durable in corrosive environments, enhancing the lifespan of coated materials.
- Low Coefficient of Friction: Diamond-like carbon (DLC) films offer excellent lubricity and are used to reduce wear in mechanical systems.
-
- High Electrical Conductivity: Especially in the form of graphite, carbon powder is widely used in applications requiring good electrical conduction.
- Thermal Stability: Carbon is highly resistant to heat and can withstand extreme temperatures, making it ideal for refractory and high-temperature applications.
- Lubrication: Graphite powder acts as a dry lubricant, reducing wear and friction between moving parts under high temperature conditions.
- Chemical Inertness: Carbon is resistant to many chemicals, which makes it suitable for use in harsh environments where it will not react or degrade easily.
- Adsorption: Activated carbon has exceptional adsorption capabilities, making it effective in filtration and environmental clean-up applications.
- Reinforcement: Carbon black provides strength and durability when added to materials such as rubber and plastics.
-
- High Reactivity: Calcium easily reacts with oxygen and nitrogen, making it ideal for certain oxidation-controlled processes.
- High Purity: Available in high-purity forms (≥ 99.9%), ensuring minimal impurities in thin film coatings.
- Good Evaporation Characteristics: Calcium has a relatively low evaporation temperature (842°C), allowing efficient deposition in vacuum environments.
- Versatile Applications: Calcium can be used for coatings that require lightweight, high-performance films in various high-tech applications.
-
- Broad Transparency Range: CaF₂ has excellent transmission from the UV (below 200 nm) to the IR (~10 µm) range, which makes it ideal for a wide variety of optical applications.
- Low Refractive Index: The material has a relatively low refractive index (~1.43), which minimizes Fresnel reflection losses and is useful in anti-reflective coatings.
- High Thermal Stability: CaF₂ can withstand high temperatures during evaporation, ensuring the stability of the material during thin-film deposition processes.
- Chemical Resistance: Calcium fluoride is chemically inert, offering durability and resistance to environmental degradation.
- Low Absorption: Its low absorption makes it suitable for high-power laser applications, especially in the UV region.
-
- High Melting Point: CaO has a melting point of around 2572°C, making it ideal for applications requiring heat resistance.
- Thermal Stability: The material offers excellent performance in high-temperature environments, making it suitable for industrial and aerospace uses.
- Good Optical Properties: CaO is transparent over a broad spectrum, from UV to visible light, which makes it useful in various optical applications.
- Chemical Stability: CaO thin films offer strong resistance to corrosion, enhancing the longevity of coatings in harsh environments.
- High Density: The material has a density of about 3.34 g/cm³, providing robustness in thin-film applications.
-
- High Purity: Cadmium pellets are typically available with purity levels of 99.9% or higher, ensuring the creation of defect-free, high-quality thin films.
- Low Melting Point: Cadmium has a relatively low melting point, making it easy to evaporate in deposition processes.
- Electrical Properties: Cadmium’s electrical conductivity and ability to form alloys make it valuable in semiconductor and electronic applications.
- Optical Properties: Cadmium thin films are used in optical devices due to their favorable reflective and refractive properties in certain wavelengths, especially in the IR and visible regions.
- Corrosion Resistance: Cadmium coatings offer protection from corrosion, especially in aerospace and marine equipment, by serving as a sacrificial layer to protect underlying materials.
-
- High Transparency: CeO₂ offers excellent transparency in both the UV and visible spectral ranges, making it suitable for various optical applications.
- Thermal Stability: It has a high melting point and thermal stability, allowing it to perform well in high-temperature environments.
- Oxidation Resistance: CeO₂ exhibits exceptional resistance to oxidation, which enhances the durability of coatings in oxidative environments.
- Chemical Inertness: CeO₂ films are chemically stable and resistant to many corrosive environments, ensuring long-lasting performance.
- Catalytic Properties: CeO₂ is valued for its oxygen storage and release capacity, which is beneficial in catalytic processes.
-
- High Purity: Purity levels up to ≥99.9999% for superior performance.
- Thermal Stability: Withstands high temperatures without degradation.
- Catalytic Efficiency: Promotes oxidation-reduction reactions effectively.
- Fine Particle Sizes: Available in nano (<100 nm) and micro (1–50 µm) grades or customized.
- UV Protection: Absorbs UV radiation, suitable for protective coatings.