Showing 145–156 of 193 results
-
- High Purity: SnO2 pellets are typically offered with a purity of 99.9% or higher, ensuring excellent quality and performance in thin-film deposition.
- Optical Transparency: SnO2 exhibits good transparency in the visible light spectrum, making it suitable for applications requiring optical clarity, such as in displays and solar cells.
- Electrical Conductivity: SnO2 films can exhibit both transparency and electrical conductivity, which is essential for applications like transparent conductive oxides (TCOs).
- Durable and Corrosion Resistant: SnO2 films are highly resistant to wear, corrosion, and environmental degradation, providing a protective barrier in coatings.
- Strong Adhesion: SnO2 coatings adhere well to a variety of substrates, which ensures durability and stability in deposited films.
-
- High purity (≥99.99%).
- Outstanding semiconducting properties with a direct bandgap.
- Suitable for thin-film deposition methods like PVD and CVD.
- Excellent stability under high-temperature and chemical conditions.
- Customizable sizes and packaging options available.
-
- High purity (≥99.99%).
- Semiconductor material with strong optical and electronic properties.
- Excellent performance in thin-film deposition techniques like PVD and CVD.
- Stable under high-temperature and chemical conditions.
- Custom sizes and packaging available.
-
- Good Thermoelectric Performance: SnSe offers high thermoelectric efficiency, making it suitable for power generation and solid-state cooling systems.
- Favorable Bandgap: SnSe has a direct bandgap of ~1.3 eV, which is ideal for absorbing sunlight in photovoltaic devices.
- Low Thermal Conductivity: Its ability to maintain a high thermoelectric figure of merit (ZT) due to low thermal conductivity is a key feature in energy conversion materials.
- High Absorption Coefficient: SnSe shows strong absorption in the visible and NIR spectrum, making it useful in light-harvesting applications.
- Stable Thin Films: SnSe can form stable, high-quality thin films via thermal or e-beam evaporation methods.
-
- Thermoelectric Efficiency: Outstanding thermoelectric performance with a high Seebeck coefficient and low thermal conductivity.
- Optoelectronic Properties: High carrier mobility and sensitivity to infrared light.
- Customizable Sizes: Tailored particle sizes for various research and industrial needs.
- Stable Crystal Structure: Rock-salt (NaCl-type) structure for robust stability.
- High Purity: Ultra-pure material for precise and repeatable results.
-
- High purity (≥99.9%).
- Excellent dielectric and optical properties.
- Uniform pellet size for precise thin-film deposition.
- Customizable sizes and specifications.
- High thermal stability and chemical resistance.
-
- High Corrosion Resistance: Tantalum provides superior protection against corrosion, especially in acidic and high-temperature environments.
- High Melting Point: Tantalum has a melting point of 3017°C, making it suitable for high-temperature applications.
- Excellent Adhesion: Tantalum adheres well to a variety of substrates, ensuring reliable and durable coatings.
- Biocompatibility: Tantalum is biocompatible and non-toxic, making it ideal for use in medical and dental applications.
- High Purity: Available in high-purity forms (≥ 99.95%) to ensure clean deposition with minimal impurities.
-
- High Refractive Index: With a refractive index of around 2.1, Ta₂O₅ is ideal for multilayer coatings in optics, where light manipulation and reflection control are critical.
- Excellent Dielectric Properties: Ta₂O₅ offers a high dielectric constant, making it an effective insulator in capacitors and semiconductors.
- Wide Bandgap: Ta₂O₅ has a wide bandgap (~4 eV), which contributes to its transparency in the visible and NIR range and its low electrical conductivity.
- Thermal Stability: Ta₂O₅ exhibits excellent thermal stability, making it suitable for high-temperature processes and applications.
- Chemical Resistance: It is resistant to most acids and chemicals, ensuring longevity in harsh environments.
-
- High Purity: Terbium pellets are typically offered with purity levels of 99.9% or higher, ensuring high-quality thin-film deposition.
- Excellent Magnetic and Optical Properties: Terbium’s unique magnetic and optical characteristics make it ideal for magneto-optical devices and display technologies.
- Versatile Deposition: Terbium pellets are suitable for various thin-film deposition methods, including thermal evaporation and e-beam evaporation, providing flexibility for different applications.
- Green Emission: Terbium is widely used in phosphors for green light emission, contributing to color display technologies and efficient lighting systems.
-
- High Refractive Index: Tb₂O₃ is ideal for optical coatings requiring high transparency and minimal loss in the infrared spectrum.
- Magnetic Properties: Its strong magnetic properties are critical for use in magneto-optical and magnetic storage devices.
- Thermal Stability: Tb₂O₃ has a high melting point and good thermal stability, making it suitable for high-temperature evaporation processes.
- Rare Earth Characteristics: As a rare earth oxide, Tb₂O₃ has unique optical and electronic properties that make it valuable in niche technological applications.
-
- High Thermoelectric Efficiency: Tellurium-based materials, like Bi2Te3, are widely recognized for their superior thermoelectric performance, essential for thermoelectric cooling and power generation.
- Infrared Transparency: Tellurium compounds exhibit transparency in the infrared spectrum, which makes them useful for IR optics and imaging devices.
- Phase-Change Properties: Tellurium has excellent phase-change properties, which enable its application in PCM for non-volatile memory storage.
- High Purity: Tellurium used in evaporation is typically of high purity (≥ 99.9%), ensuring uniformity and high-quality thin film deposition.
- Stable Evaporation: Tellurium can be evaporated with thermal and electron-beam techniques, providing consistent deposition rates for thin films.
-
- High Corrosion Resistance: Titanium’s natural oxide layer provides exceptional resistance to corrosion, making it ideal for harsh environments.
- Strong Adhesion: Titanium films have excellent adhesion to a wide range of substrates, ensuring durable, stable coatings.
- Low Density: Titanium is lightweight, making it ideal for applications where weight reduction is important, such as in aerospace and medical industries.
- High Melting Point: With a melting point of 1,668°C, titanium can be used in high-temperature environments without degradation.
- Biocompatibility: Titanium’s biocompatibility makes it suitable for medical implants and devices.