Showing 97–108 of 164 results
-
- High Purity: Available in high-purity grades to ensure the production of defect-free thin films, which are essential for optical and electronic applications.
- Flame Retardant Properties: When deposited as a thin film, Sb₂O₃ enhances the flame retardant capabilities of various materials, particularly polymers and textiles.
- Optical Transparency: Sb₂O₃ has excellent transparency in the UV and visible light spectrum, making it a suitable material for optical applications.
- Thermal Stability: Its stability at high temperatures makes it useful in processes where thermal resistance is necessary.
-
- High Optical Absorption: Sb₂S₃ is known for its strong absorption in the visible and near-infrared regions, making it ideal for photovoltaic and optoelectronic applications.
- Environmentally Friendly: Sb₂S₃ is composed of elements that are abundant and less toxic compared to other heavy metals used in similar applications.
- Tunability: The bandgap of Sb₂S₃ can be tuned by modifying deposition parameters, allowing for control over its optical and electronic properties in thin films.
- Thermoelectric Properties: Sb₂S₃ is being explored for its potential to generate electrical energy from thermal gradients, offering promise in energy-harvesting devices.
-
- High Absorption Coefficient: Sb₂Se₃ has a high absorption coefficient, which makes it effective for thin-film solar cells and light-harvesting applications.
- Bandgap: The material has a bandgap around 1.1 to 1.3 eV, ideal for photovoltaic devices aimed at capturing sunlight efficiently.
- Non-Toxic and Earth-Abundant: Sb₂Se₃ offers an environmentally friendlier and more sustainable alternative to other thin-film materials like cadmium-based compounds.
- Stable Crystal Structure: Sb₂Se₃ thin films exhibit a stable orthorhombic crystal structure, which contributes to their robustness in various electronic and energy-related applications.
-
- High Thermoelectric Efficiency: Sb₂Te₃ exhibits excellent thermoelectric performance with a high figure of merit (ZT) near room temperature, making it one of the most effective materials for energy conversion and cooling applications.
- Phase-Change Properties: Its ability to rapidly switch between different phases with thermal cycling makes Sb₂Te₃ ideal for memory devices such as phase-change random-access memory (PCRAM).
- Topological Insulator Properties: Sb₂Te₃ is used in cutting-edge research into topological insulators, with potential applications in quantum computing and advanced electronics.
- Customizable Thin Films: Sputtering targets allow for controlled deposition of Sb₂Te₃ films with tailored thickness, composition, and properties for specific device requirements.
-
- High Dielectric Constant: Sc₂O₃ is known for its high dielectric constant, making it useful in capacitors and semiconductor devices.
- Thermal Stability: Sc₂O₃ maintains its properties even at elevated temperatures, making it suitable for harsh environments.
- Optical Transparency: Sc₂O₃ is transparent across a wide range of wavelengths, from UV to IR, which is beneficial in optical coatings and devices.
- Corrosion Resistance: Sc₂O₃ thin films are highly resistant to chemical corrosion, enhancing the longevity of coated surfaces.
-
- Purity: High-purity selenium (typically 99.9% or higher) ensures the quality of the deposited films and consistent performance.
- Photoconductivity: Selenium is highly photoconductive, making it ideal for optoelectronic and photovoltaic applications.
- Customizable Size and Shape: Selenium sputtering targets are available in different forms, including discs, plates, and custom shapes, to fit a variety of PVD systems.
- Thermal and Electrical Properties: Selenium films offer excellent thermal and electrical properties, crucial for semiconductor and photovoltaic devices.
-
- Purity: Silicon sputtering targets are typically available in high purity (99.999% or higher) to ensure high-performance film deposition, particularly in sensitive semiconductor applications.
- Electrical Properties: Silicon is an intrinsic semiconductor, and thin films made from silicon offer excellent electrical characteristics for electronic and optoelectronic devices.
- Thermal Conductivity: Silicon’s thermal properties make it ideal for applications where heat dissipation is important, such as in power electronics and solar cells.
- Customizable Size and Shape: Silicon sputtering targets come in various forms, including discs, plates, and custom shapes to fit different deposition systems.
-
- High Purity: Ensures minimal contamination and consistent deposition performance.
- Optimal Stoichiometry: Precisely controlled Si and Te ratio for superior material properties.
- Wide Compatibility: Suitable for various deposition techniques, including PVD and sputtering.
- Excellent Film Properties: Supports the production of uniform, high-quality thin films.
- Customizable Options: Flexible sizes and shapes to fit diverse sputtering systems.
-
- High Hardness: Si₃N₄ thin films are extremely hard and wear-resistant, making them ideal for applications in harsh mechanical environments.
- Excellent Thermal Stability: Si₃N₄ offers high thermal stability, ensuring reliability and performance in high-temperature applications, such as semiconductors and aerospace components.
- Low Thermal Expansion: Silicon Nitride exhibits low thermal expansion, contributing to its stability and performance under thermal stress.
- Chemical Resistance: Si₃N₄ is chemically inert and resists corrosion from most acids, bases, and chemical agents, which makes it suitable for protective coatings in chemically aggressive environments.
- Insulating Properties: Si₃N₄ films are used as dielectric materials due to their excellent electrical insulating properties, ensuring their use in semiconductor and electronic applications.
-
- Exceptional Hardness: Ideal for durable, wear-resistant coatings.
- High Thermal Stability: Performs well under extreme temperatures.
- Wide Bandgap Properties: Suitable for high-power and high-frequency applications.
- Chemical Resistance: Resilient to corrosive environments.
- Customizable Configurations: Available in various sizes, purities, and bonding options.
-
- High Purity: Ensures superior film quality and consistent performance.
- Wide Optical Transparency: Suitable for coatings across UV, visible, and IR ranges.
- Stable and Durable: High thermal and chemical stability for demanding processes.
- Customizable Options: Available in various sizes, purities, and configurations.
-
- Excellent Insulator: SiO₂ has a high dielectric strength, making it a perfect insulating material for electronic devices and integrated circuits.
- High Optical Transparency: SiO₂ is highly transparent in the UV, visible, and near-IR regions, making it suitable for optical coatings and protective layers.
- Chemical Stability: SiO₂ exhibits strong chemical resistance, ensuring that deposited films are durable and stable under harsh environmental conditions.
- Thermal Stability: Silicon Dioxide can withstand high temperatures, making it reliable for use in applications that involve thermal stress.
- Hardness: SiO₂ provides a protective layer that is scratch-resistant and durable, making it ideal for surface coatings.