Showing 25–36 of 244 results
-
- High Purity: Offers high purity to ensure the quality of thin films and optimal device performance.
- Excellent Thermoelectric Properties: Ideal for thermoelectric applications where high efficiency is crucial.
- Uniform Deposition: Provides uniform and stable sputtering, ensuring consistent thin film quality.
- Thermal Stability: Excellent resistance to heat and thermal cycling, making it suitable for high-temperature applications.
-
- High Thermal Conductivity: BN targets are ideal for applications requiring effective heat management.
- Electrical Insulation: Provides excellent dielectric properties, essential for insulating layers in various electronic devices.
- Chemical Inertness: Highly resistant to most chemicals, ensuring long-term durability in aggressive environments.
- Easy to Sputter: BN sputtering targets have excellent sputtering properties, ensuring consistent and uniform deposition.
- High Purity: Available in high-purity grades for precision applications.
-
- High Dielectric Constant: BST has an exceptionally high dielectric constant, which can be adjusted by varying the Ba/Sr ratio, making it ideal for capacitive applications.
- Tunable Properties: The dielectric constant of BST is voltage-tunable, which is valuable in applications that require adjustable electronic properties, such as tunable filters or phased array antennas.
- Ferroelectric and Pyroelectric: BST exhibits both ferroelectric and pyroelectric properties, making it useful in memory devices and sensors.
- Thermal Stability: BST thin films maintain good stability under high temperatures, which is important for applications in electronics and microwave systems.
- Customizable Composition: The Ba/Sr ratio can be tailored to optimize specific properties, such as tunability, dielectric constant, and thermal stability, for different applications.
-
- Purity: Graphite sputtering targets are available in high purity (typically 99.9% or higher) to ensure optimal film quality, especially in semiconductor and energy storage applications.
- High Conductivity: Graphite offers excellent electrical conductivity, making it suitable for thin films in electronic components.
- Thermal Stability: Graphite can withstand high temperatures, making it ideal for applications in high-heat environments.
- Chemical Resistance: Graphite is resistant to many chemicals, enabling its use in corrosive environments and protective coatings.
- Customizable Size and Shape: Available in various forms, such as discs, plates, and custom shapes to fit specific deposition systems.
-
Calcium (Ca) sputtering targets are high-purity materials used in physical vapor deposition (PVD) processes, specifically sputtering, to create thin films of calcium on various substrates. These targets are essential in various advanced technologies, including electronics, optics, and materials science, due to calcium’s unique properties.
-
- Wide Optical Transparency: Effective from UV to IR spectra (0.13–11 μm).
- High Chemical Stability: Resistant to moisture and chemical degradation.
- Low Refractive Index: Reduces the need for complex multilayer coatings.
- Thermal Stability: Suitable for high-temperature thin-film deposition.
- High Purity: Ensures uniform film quality and minimizes defects.
-
- High Electrical Conductivity: CdO is known for its good electrical conductivity, making it an excellent material for use in electronic and optoelectronic devices.
- Optical Transparency: CdO films offer transparency in the visible light spectrum, making them ideal for TCO applications.
- Good Chemical Stability: CdO targets provide stable films that resist degradation in various environmental conditions.
- Infrared Absorption: CdO’s strong absorption properties in the infrared range are advantageous for applications in IR optics and detectors.
-
- Direct Bandgap Semiconductor: CdS has a direct bandgap (~2.42 eV), making it an excellent material for optoelectronic applications requiring high-efficiency light absorption and emission.
- High Transparency: CdS exhibits high transparency in the visible spectrum, making it an ideal candidate for window layers in photovoltaic devices.
- Stable and Efficient: CdS is a stable semiconductor with efficient electron-hole pair generation, which enhances the performance of solar cells and optoelectronic devices.
- Low-cost Semiconductor: Compared to other semiconductors, CdS offers a cost-effective solution for large-scale production in photovoltaics and other electronics.
-
- Direct Bandgap Semiconductor: CdSe has a direct bandgap (~1.74 eV), making it ideal for optoelectronic applications such as light-emitting devices, lasers, and photovoltaics.
- High Absorption Coefficient: CdSe exhibits a high absorption coefficient in the visible range, making it suitable for applications in solar cells and photodetectors.
- Quantum Dot Applications: CdSe is widely used in quantum dots, offering tunable emission properties based on the size of the particles, enabling use in next-generation displays and medical imaging.
- Wide Range of Optical and Electronic Properties: CdSe offers tunable optical and electronic properties, making it useful across a wide range of applications from sensors to light-emitting devices.
-
- Purity: Available at 99.9% or higher purity to ensure optimal film quality and performance.
- Oxidation-Reduction Properties: Cerium’s ability to switch between oxidation states (Ce³⁺ and Ce⁴⁺) makes it ideal for catalytic and energy applications.
- Customizable Size and Shape: Cerium sputtering targets are available in various forms such as discs, plates, and cylinders to suit different deposition systems.
- Thermal Stability: Cerium films offer high thermal stability, making them suitable for high-temperature applications like fuel cells and catalytic converters.
-
- High Refractive Index: CeO₂ is valued in optical applications due to its high refractive index and transparency in the visible spectrum.
- Excellent Catalytic Properties: CeO₂’s strong ability to promote oxidation reactions makes it essential in catalytic applications.
- Dielectric Properties: CeO₂ has a high dielectric constant, making it suitable for thin film applications in the semiconductor industry.
- Chemical Stability: CeO₂ is chemically stable in harsh environments, ensuring the durability of thin films under various conditions.
-
- Purity: Cobalt sputtering targets are typically available in high purity levels, such as 99.95% (3N5) or higher, ensuring the deposition of high-quality, consistent films.
- Shapes and Sizes: These targets are available in various forms, including discs, plates, and custom shapes, to suit different sputtering systems and specific application requirements.