Showing 37–43 of 43 results
-

- Balanced Alloy Composition: Combines Fe, Co, Ni, Al, Cu, and Ti for superior performance.
- High Strength and Durability: Exceptional mechanical properties for demanding environments.
- Thermal Stability: Operates efficiently under extreme temperature conditions.
- Corrosion Resistance: Excellent resistance to oxidation and environmental wear.
- Magnetic Properties: Suitable for applications requiring magnetic performance.
- Customizable Particle Sizes: Available in nano and micro scales for various uses.
-

- Multi-Element Alloy: Balanced composition of Fe, Cu, Al, Cr, and Ni for enhanced properties.
- High Corrosion Resistance: Excellent resistance to oxidation and environmental degradation.
- Superior Mechanical Strength: Outstanding strength and durability for demanding applications.
- Thermal Stability: Maintains performance under high temperatures.
- Customizable Particle Sizes: Tailored for diverse manufacturing needs.
-


- High Thermal Conductivity: Copper’s excellent thermal conductivity ensures effective heat dissipation in thin-film coatings, crucial for applications in electronics and thermal management systems.
- Mechanical Strength: Molybdenum contributes strength and rigidity to the MoCu alloy, ensuring mechanical stability in high-temperature and high-stress applications.
- Corrosion Resistance: The MoCu alloy provides good resistance to corrosion, making it suitable for use in environments where materials are exposed to moisture, chemicals, or harsh conditions.
- Low Thermal Expansion: The alloy’s combination of molybdenum and copper results in low thermal expansion, reducing the risk of film cracking or damage under thermal stress.
- Customizable Composition: The ratio of molybdenum to copper can be tailored to optimize the thermal, electrical, and mechanical properties to meet specific application requirements.
-

- Corrosion Resistance: Excellent performance in seawater, acidic, and alkaline environments.
- High Strength: Maintains structural integrity under stress and extreme conditions.
- Versatile Fabrication: Ideal for welding, machining, and advanced manufacturing techniques.
- Thermal Stability: Performs reliably at both low and high temperatures.
- Non-Magnetic: Retains non-magnetic properties in various conditions.
-


- High Electrical Conductivity: NiCu alloy sputtering targets offer excellent electrical conductivity, making them ideal for thin films in electronic devices where efficient current flow is essential.
- Corrosion Resistance: The combination of nickel and copper provides strong corrosion resistance, allowing the thin films to withstand exposure to chemicals and harsh environments, such as marine and industrial settings.
- Magnetic Properties: NiCu alloys exhibit useful magnetic properties, which can be tailored for specific applications such as sensors, transformers, and other magnetic devices.
- Thermal Stability: NiCu alloy thin films maintain their structural integrity at elevated temperatures, making them suitable for high-temperature applications in aerospace and industrial settings.
- Customizable Composition: The ratio of nickel to copper can be adjusted to optimize the properties of the thin film for specific applications, such as enhancing conductivity or corrosion resistance.
-


- High Electrical Conductivity: NiCuTi alloy sputtering targets deliver excellent electrical conductivity, making them ideal for use in electronic devices requiring efficient current flow and minimal energy loss.
- Corrosion Resistance: The addition of copper and titanium enhances the alloy’s ability to resist corrosion, particularly in environments exposed to chemicals, moisture, and salts.
- Enhanced Mechanical Strength: Titanium in the alloy improves the mechanical strength and wear resistance of NiCuTi thin films, making them suitable for applications requiring durability and high-stress tolerance.
- Thermal Stability: NiCuTi alloy thin films maintain their properties at high temperatures, making them suitable for aerospace and industrial applications involving elevated temperatures.
- Customizable Composition: The ratio of nickel, copper, and titanium in the alloy can be tailored to meet specific requirements, such as improving wear resistance or optimizing corrosion protection.
-

- High Strength: ZrCu particles exhibit exceptional mechanical properties suitable for structural and functional components.
- Excellent Corrosion Resistance: Resistant to oxidation and harsh chemical environments.
- Superior Thermal and Electrical Conductivity: Ideal for applications requiring efficient heat and electrical transfer.
- Wear Resistance: Provides durability in high-friction and abrasive environments.
- Customizable Options: Tailored compositions and particle sizes to suit specific industrial needs.