Showing 1–12 of 40 results
-
- High Mechanical Strength: The combination of aluminum, chromium, cobalt, iron, and nickel in the alloy imparts excellent mechanical strength, making it ideal for thin films that require toughness and resistance to mechanical stress.
- Superior Corrosion Resistance: Chromium and nickel contribute to the alloy’s outstanding corrosion resistance, allowing thin films to perform well in corrosive environments, such as in aerospace and marine applications.
- Thermal Stability: AlCrCoFeNi alloy thin films retain their structural properties at elevated temperatures, making them suitable for high-temperature environments, such as in engines and turbines.
- Wear Resistance: Cobalt and chromium enhance the wear resistance of the alloy, making it ideal for hard coatings in industrial tools and machinery parts.
- High-Entropy Alloy Properties: As a high-entropy alloy, AlCrCoFeNi offers a unique combination of properties that cannot be achieved with traditional alloys, including high strength, toughness, and resistance to oxidation and corrosion.
-
- Enhanced Strength: The iron content provides increased mechanical strength compared to pure aluminum.
- Corrosion Resistance: Improved corrosion resistance, making it suitable for harsh environments.
- Magnetic Properties: Offers magnetic characteristics beneficial for specific electronic applications.
- Versatile Deposition Techniques: Compatible with various deposition methods, including thermal evaporation and sputtering.
-
- High Strength-to-Weight Ratio: Combines lightweight characteristics with robust mechanical properties.
- Excellent Wear Resistance: Ensures durability in high-stress environments.
- Corrosion and Oxidation Resistance: Performs reliably in extreme chemical or thermal conditions.
- Uniform Microstructure: Enhances performance consistency across applications.
- Wide Applicability: Suitable for 3D printing, surface coatings, and high-performance components.
-
- Multiferroic Properties: BiFeO₃ demonstrates both ferroelectric and antiferromagnetic properties, making it ideal for multifunctional devices.
- Room Temperature Functionality: One of the few multiferroic materials that operates effectively at room temperature, allowing for broader application in consumer electronics and industrial devices.
- Photovoltaic Effects: BiFeO₃ can be used to create thin films that convert light into electricity, opening avenues for energy harvesting and improving photovoltaic technologies.
- Customizable: The size, shape, and purity of BiFeO₃ sputtering targets can be tailored to meet specific requirements for various deposition techniques.
-
- High Purity: ≥ 99.9% purity ensures high-quality thin films with precise optical and magnetic properties.
- Superior Magneto-Optical Performance: Provides excellent Faraday rotation and low optical loss.
- Stable Composition: Chemically stable and reliable for prolonged usage.
- Customizability: Available in various shapes, sizes, and thicknesses to fit specific sputtering systems.
- Compatibility: Suitable for both RF and DC magnetron sputtering methods.
-
- High Saturation Magnetization: CoFe alloys exhibit one of the highest saturation magnetizations among magnetic materials, making them ideal for magnetic storage and sensor applications.
- Excellent Permeability: The alloy’s high permeability enables efficient magnetic performance, particularly in devices requiring soft magnetic properties with minimal energy loss.
- Low Coercivity: CoFe films have low coercivity, which is beneficial for reducing power losses in magnetic components and enhancing the performance of thin-film magnetic sensors and data storage devices.
- Corrosion Resistance: CoFe alloys possess good resistance to oxidation and corrosion, extending the longevity of thin-film applications in harsh environments.
- Customizable Composition: The ratio of cobalt to iron can be adjusted to fine-tune magnetic properties and optimize the sputtering target for specific applications.
-
- High Magnetic Saturation: Offers strong magnetic performance, making it suitable for a range of electromagnetic applications.
- Durability: Provides good mechanical strength and resistance to wear and corrosion.
- Versatile: Can be used in various thin-film deposition techniques for diverse applications.
-
- High Magnetic Moment: CoFeB alloy exhibits a high magnetic moment, making it ideal for applications requiring strong magnetic fields, such as data storage and magnetic sensors.
- Soft Magnetic Properties: The addition of boron to the CoFe alloy improves the soft magnetic properties, reducing coercivity and allowing for efficient magnetization with minimal energy loss.
- Low Coercivity: CoFeB films have very low coercivity, contributing to higher energy efficiency and better performance in magnetic thin films and devices.
- Thermal Stability: CoFeB exhibits excellent thermal stability, maintaining its magnetic properties at elevated temperatures, making it suitable for high-performance applications.
- Tunneling Magnetoresistance (TMR): CoFeB is widely used in magnetic tunneling junctions due to its ability to produce a high tunneling magnetoresistance effect, improving the performance of MRAM and spintronic devices.
-
- Excellent Magnetic Properties: High saturation magnetization and low coercivity for efficient magnetic performance.
- Thermal Stability: Maintains magnetic properties under high-temperature conditions.
- Low Magnetostriction: Ensures minimal distortion in magnetic fields for precision applications.
- Customizable Composition: Available with tailored Co, Fe, and B ratios to meet specific needs.
- Versatile Particle Sizes: Suitable for nanometer to micrometer applications.
-
- High Electrical Conductivity: Retains copper’s excellent conductive properties.
- Mechanical Strength: Enhanced by the inclusion of iron, making it suitable for robust applications.
- Customizable Composition: Various Cu-Fe ratios tailored to specific industrial needs.
- Corrosion Resistance: Provides protection against oxidation and wear.
- Uniform Particle Size: Ensures consistency in manufacturing processes.
-
- Superior Performance in Electromagnetic Applications: The high magnetic permeability of high purity iron makes it an ideal material for manufacturing electromagnetic components such as inductors, transformers, and magnetic shielding.
- Enhanced Material Properties: The minimal presence of impurities in high purity iron improves its mechanical properties, such as ductility, tensile strength, and fatigue resistance, making it more reliable in demanding applications.
- Improved Durability: The high purity of iron ensures that it is less susceptible to failure due to impurities, offering longer-lasting performance in industrial and technological applications.
- Customization: High purity iron wire can be tailored to specific requirements, such as wire gauge, length, and coatings, for specialized applications in different industries.
- High Precision and Consistency: The uniformity of high purity iron ensures that it performs consistently in precision applications, where small variations in material properties can lead to failure.
- Cost-Effectiveness: While high purity iron wire may have a slightly higher initial cost than standard iron wire, its superior performance and longer lifespan make it a cost-effective choice in the long run, especially for advanced applications.
-
Iron (Fe Ferrum) sputtering targets are essential for industries that rely on the unique magnetic, electrical, and structural properties of iron, making them indispensable in magnetic storage, electronics, industrial coatings, and advanced material applications.