Showing 1–12 of 25 results
-
- High purity (≥99.9%).
- Excellent thermoelectric and optical properties.
- Stable in various thin-film deposition techniques.
- Uniform size for consistent vaporization and deposition.
- Custom pellet sizes and compositions available.
-
- Layered Structure: Enables the exfoliation of thin films for various nanodevice applications.
- High Carrier Mobility: Supports rapid electron and hole movement for faster electronic response.
- Tunable Bandgap: Adjustable for different applications, optimizing its use in various electronic and optical devices.
- Good Thermal Stability: Suitable for high-temperature applications, enhancing long-term reliability.
-
- High Thermoelectric Efficiency: Bi2Se3 has a high figure of merit (ZT), making it highly efficient for thermoelectric conversion.
- Topological Insulator Properties: It exhibits insulating behavior in its bulk with conductive surface states, which are resistant to backscattering and have potential in quantum computing.
- Good IR Absorption: Bi2Se3 is efficient in absorbing infrared radiation, making it useful in IR detectors and sensors.
- Stable at High Temperatures: It offers thermal stability and is suitable for evaporation at high temperatures, enabling consistent film formation.
- High Purity: Available in high purity, ensuring reliable and high-quality thin films for sensitive applications.
-
- High Purity: Available with ≥99.9% purity for optimal performance.
- Topological Insulator Properties: Enables applications in quantum computing and advanced electronics.
- Excellent Thermoelectric Efficiency: Ideal for energy harvesting and cooling systems.
- Customizable Particle Sizes: Nano and micro scales tailored to specific applications.
- Stable Composition: Chemically stable and resistant to degradation.
- Environmentally Friendly: Non-toxic and suitable for sustainable technologies.
-
- Topological Insulator Properties: Bi₂Se₃ is known for its topological insulator characteristics, where it supports surface conduction while acting as an insulator in its bulk, opening pathways for advanced quantum applications.
- Thermoelectric Efficiency: Bi₂Se₃ exhibits excellent thermoelectric performance with a high Seebeck coefficient, making it a critical material for thermoelectric energy conversion.
- Low Thermal Conductivity: Its low thermal conductivity helps in maximizing the thermoelectric efficiency in power generation and cooling applications.
- High IR Sensitivity: Bi₂Se₃’s sensitivity to infrared radiation makes it ideal for IR sensors and other optoelectronic devices.
-
- Direct Bandgap Semiconductor: CdSe has a direct bandgap (~1.74 eV), making it ideal for optoelectronic applications such as light-emitting devices, lasers, and photovoltaics.
- High Absorption Coefficient: CdSe exhibits a high absorption coefficient in the visible range, making it suitable for applications in solar cells and photodetectors.
- Quantum Dot Applications: CdSe is widely used in quantum dots, offering tunable emission properties based on the size of the particles, enabling use in next-generation displays and medical imaging.
- Wide Range of Optical and Electronic Properties: CdSe offers tunable optical and electronic properties, making it useful across a wide range of applications from sensors to light-emitting devices.
-
- High purity (≥99.99%).
- Outstanding thermoelectric and electrical properties.
- Stable crystalline structure.
- Uniform pellet size for consistent deposition outcomes.
- Tailored sizes and shapes available to meet application requirements.
-
- High Purity: ≥99.5% purity for optimal thin-film quality.
- Stable Composition: Ensures consistent performance during sputtering.
- Excellent Electrical Conductivity: Suitable for functional thin-film coatings.
- Thermal and Chemical Stability: Performs reliably under various sputtering conditions.
- Customizable: Adaptable to specific equipment and application requirements.
-
- High Solar Conversion Efficiency: CuInGaSe (CIGS) thin films exhibit high energy conversion efficiency, particularly in thin-film photovoltaic cells, making them an ideal choice for modern solar technology.
- Wide Bandgap Tunability: The presence of gallium allows for tuning the bandgap, which improves the absorption spectrum and efficiency of solar cells.
- Lightweight and Flexible: CIGS thin-film solar panels are lighter and more flexible compared to traditional silicon-based panels, enabling their use in various applications, from portable devices to large-scale installations.
- Excellent Absorption Properties: CIGS thin films offer superior absorption of sunlight across a wide range of wavelengths, making them more effective at capturing solar energy, even in diffuse or low-light conditions.
- Stable in Harsh Conditions: CuInGaSe thin films provide stability and performance reliability in a range of environmental conditions, ensuring long-lasting performance in solar panels.
-
- Semiconducting Properties: CuSe is a p-type semiconductor material, making it useful in the development of electronic and optoelectronic devices.
- High Absorption Coefficient: It has a high absorption coefficient in certain wavelengths, making it suitable for photovoltaic and optical coating applications.
- Stability: Copper selenide is stable under a wide range of conditions, providing longevity for deposited thin films in various environmental settings.
- Excellent Conductivity: The material demonstrates good electrical conductivity, which is valuable in the context of solar energy harvesting and thermoelectric applications.
-
- High Purity: Ensures defect-free deposition for precision applications.
- Good Electrical Conductivity: Suitable for functional and conductive coatings.
- Stable Performance: Maintains chemical and thermal stability during sputtering processes.
- Customizable: Available in various dimensions and shapes for compatibility with sputtering systems.
-
- Excellent IR Transparency: GeSe₂ has good transmission in the infrared spectrum, making it ideal for optical coatings and IR components.
- Semiconducting Properties: It exhibits semiconductor behavior, making it useful for electronics, photonics, and photovoltaic applications.
- Phase Change Behavior: GeSe₂ can undergo reversible phase changes, a property that is useful in memory storage devices.
- Good Film Uniformity: When evaporated, GeSe₂ forms uniform, high-quality thin films, suitable for precise optical coatings and electronic applications.