Showing 13–24 of 25 results
-
- Infrared Transparency: GeSe₂ offers excellent transmission in the infrared spectrum, making it suitable for IR optics and photonic applications.
- Phase-Change Properties: GeSe₂ is a key material in phase-change memory technology, providing the ability to switch between different states under thermal or electrical stimuli.
- Chemical and Thermal Stability: GeSe₂ thin films exhibit strong chemical resistance and can withstand high temperatures, ensuring longevity and performance in harsh conditions.
- High Refractive Index: GeSe₂ has a high refractive index, making it suitable for optical applications requiring materials with specific light-bending capabilities.
-
- High Optical Absorption: Ideal for solar energy harvesting applications.
- Semiconductor Versatility: Tunable electronic properties for various device designs.
- Eco-Friendly Composition: Cadmium-free material for safer and sustainable usage.
- Customizable Solutions: Specifications tailored to meet specific deposition requirements.
- High Purity: Ensures consistent and high-quality thin films.
-
- High Purity: Ensures superior thin-film quality and device performance.
- Layered Structure: Facilitates easy exfoliation and 2D material synthesis.
- Stable Chemical Composition: Provides consistent results across various deposition processes.
- Excellent Optical and Electrical Properties: Ideal for advanced electronics and optoelectronics.
- Custom Configurations: Available in tailored sizes, shapes, and thicknesses for specific requirements.
-
- High Purity: ≥99.5% purity to ensure high-quality thin-film deposition.
- Unique Layered Structure: Facilitates superior electronic and optical properties for advanced applications.
- Superconducting Properties: Ideal for applications in superconducting electronics and quantum computing research.
- High Stability: Reliable performance under sputtering conditions with excellent chemical stability.
- Customizable: Tailored sizes and shapes for different deposition setups.
-
- High Absorption Coefficient: Sb2Se3 is known for its strong light absorption in the visible spectrum, making it ideal for thin-film solar cells.
- Stable Material: It exhibits good thermal and chemical stability, ensuring long-lasting performance in devices.
- Non-Toxic Alternative: Sb2Se3 is considered a safer and more environmentally friendly alternative to toxic materials like cadmium-based compounds in photovoltaic applications.
- Low Cost: It is a relatively cost-effective material for large-scale thin-film applications.
-
- High Absorption Coefficient: Sb₂Se₃ has a high absorption coefficient, which makes it effective for thin-film solar cells and light-harvesting applications.
- Bandgap: The material has a bandgap around 1.1 to 1.3 eV, ideal for photovoltaic devices aimed at capturing sunlight efficiently.
- Non-Toxic and Earth-Abundant: Sb₂Se₃ offers an environmentally friendlier and more sustainable alternative to other thin-film materials like cadmium-based compounds.
- Stable Crystal Structure: Sb₂Se₃ thin films exhibit a stable orthorhombic crystal structure, which contributes to their robustness in various electronic and energy-related applications.
-
- Photoconductive Properties: Selenium changes its electrical conductivity when exposed to light, making it essential for optoelectronic devices such as photodetectors and xerography.
- Semiconductor Capabilities: Selenium is a key element in semiconductor applications, offering high photoelectric sensitivity and versatility in electronic components.
- High Purity: Selenium evaporation materials are typically offered in high-purity levels (≥ 99.9%) for optimal thin-film deposition and consistent results.
- Compatibility with PVD Techniques: Selenium pellets can be easily evaporated using thermal or electron-beam evaporation, providing stable and uniform thin films.
- Infrared Optics: Selenium-based compounds, like cadmium selenide (CdSe), are used in infrared detectors and imaging technologies due to their IR transparency.
-
- Purity: High-purity selenium (typically 99.9% or higher) ensures the quality of the deposited films and consistent performance.
- Photoconductivity: Selenium is highly photoconductive, making it ideal for optoelectronic and photovoltaic applications.
- Customizable Size and Shape: Selenium sputtering targets are available in different forms, including discs, plates, and custom shapes, to fit a variety of PVD systems.
- Thermal and Electrical Properties: Selenium films offer excellent thermal and electrical properties, crucial for semiconductor and photovoltaic devices.
-
- Good Thermoelectric Performance: SnSe offers high thermoelectric efficiency, making it suitable for power generation and solid-state cooling systems.
- Favorable Bandgap: SnSe has a direct bandgap of ~1.3 eV, which is ideal for absorbing sunlight in photovoltaic devices.
- Low Thermal Conductivity: Its ability to maintain a high thermoelectric figure of merit (ZT) due to low thermal conductivity is a key feature in energy conversion materials.
- High Absorption Coefficient: SnSe shows strong absorption in the visible and NIR spectrum, making it useful in light-harvesting applications.
- Stable Thin Films: SnSe can form stable, high-quality thin films via thermal or e-beam evaporation methods.
-
- High Purity: ≥ 99.99% purity for optimal thin-film deposition.
- Layered Crystal Structure: Supports efficient film formation and exfoliation.
- Exceptional Thermoelectric Performance: High Seebeck coefficient and low thermal conductivity.
- Broad Application Range: Versatile for electronic, photovoltaic, and thermoelectric uses.
- Customizable Options: Available in various sizes, shapes, and bonding configurations.
-
- High Purity: ≥ 99.99% purity ensures consistent and efficient thin-film deposition.
- Layered Structure: Promotes easy exfoliation and high-quality thin-film production.
- Exceptional Optical and Electrical Properties: High carrier mobility and excellent absorption coefficients.
- Thermoelectric Efficiency: Strong performance in thermal-to-electric energy conversion.
- Customizable Options: Tailored sizes and shapes to suit diverse applications.
-
- High Purity: Ultra-pure WSe₂ for reliable and repeatable performance.
- Layered Structure: Two-dimensional material with strong in-plane bonding and weak interlayer van der Waals forces.
- Exceptional Optical Properties: Ideal for applications requiring precise light absorption and emission.
- Chemical Stability: Resistant to oxidation and degradation in harsh environments.
- Customizable Particle Size: Tailored to specific research or industrial needs.