Showing 13–24 of 56 results
-

- Exceptional Ionic Conductivity: Enhances energy transfer in battery technologies.
- Stable and Durable: Chemically stable under a wide range of operating conditions.
- High Dielectric Constant: Ideal for electronic and capacitor applications.
- Customizable: Available in multiple sizes, shapes, and purity levels to meet specific application needs.
- Compatible: Works efficiently with various sputtering deposition systems.
-

- Mott Insulator Properties: LaTiO₃ exhibits insulating behavior despite having partially filled electronic bands, which makes it valuable in the study of Mott insulators and potential applications in quantum electronics.
- Perovskite Structure: Its perovskite crystal structure enables integration into other perovskite materials and systems, providing flexibility in multilayered thin-film devices.
- Electrical and Magnetic Properties: LaTiO₃ exhibits a combination of electrical and magnetic properties that are useful in advanced electronic devices.
- Optical Transparency: The material is transparent in certain spectral regions, making it suitable for use in optoelectronic devices.
-


- High Stability: Li₄Ti₅O₁₂ has excellent chemical and structural stability, making it an ideal material for long-lasting energy storage devices.
- Low Volume Expansion: This material shows minimal expansion and contraction during charge/discharge cycles, improving battery longevity.
- Thermal Safety: Li₄Ti₅O₁₂ has a high thermal stability, reducing the risk of overheating in energy storage devices.
- Fast Charging Capability: The material is recognized for its fast charge/discharge properties, making it suitable for high-performance batteries.
-

- High Corrosion Resistance: The addition of zirconium and titanium enhances the alloy’s resistance to corrosion, making it suitable for harsh environments, including semiconductor processing and aerospace applications.
- Thermal Stability: Molybdenum’s high melting point, combined with the stability of zirconium and titanium, allows MoZrTi thin films to maintain performance at elevated temperatures.
- Electrical Conductivity: MoZrTi alloy thin films provide good electrical conductivity, ideal for applications in electronic devices such as transistors and semiconductors.
- Mechanical Strength: The alloy offers a combination of strength and toughness, ensuring durability in wear-resistant coatings and industrial components.
- Oxidation Resistance: MoZrTi thin films resist oxidation, which is critical for maintaining performance over long periods, particularly in high-temperature and oxidative environments.
-

- High Dielectric Constant: NbTiO₃ has a high dielectric constant, making it ideal for capacitors and other electronic components requiring high energy density.
- Ferroelectric Properties: The ferroelectric nature of NbTiO₃ enables its use in memory devices and sensors that need stable, reliable performance under varying conditions.
- Optical Transparency: NbTiO₃ thin films provide excellent optical transparency, ensuring their application in optoelectronic devices and displays.
- Chemical and Thermal Stability: NbTiO₃ films are highly stable in both chemical and thermal environments, ensuring long-lasting performance in demanding applications.
-


- High Electrical Conductivity: NiCuTi alloy sputtering targets deliver excellent electrical conductivity, making them ideal for use in electronic devices requiring efficient current flow and minimal energy loss.
- Corrosion Resistance: The addition of copper and titanium enhances the alloy’s ability to resist corrosion, particularly in environments exposed to chemicals, moisture, and salts.
- Enhanced Mechanical Strength: Titanium in the alloy improves the mechanical strength and wear resistance of NiCuTi thin films, making them suitable for applications requiring durability and high-stress tolerance.
- Thermal Stability: NiCuTi alloy thin films maintain their properties at high temperatures, making them suitable for aerospace and industrial applications involving elevated temperatures.
- Customizable Composition: The ratio of nickel, copper, and titanium in the alloy can be tailored to meet specific requirements, such as improving wear resistance or optimizing corrosion protection.
-


- Shape Memory Effect: NiTi alloys can return to their original shape after deformation when exposed to a certain temperature, making them highly valuable in applications requiring memory or actuation.
- Superelasticity: NiTi alloys exhibit significant elastic deformation, which allows them to absorb and release mechanical stress, ideal for flexible and resilient components.
- Corrosion Resistance: NiTi has excellent resistance to corrosion, making it suitable for biomedical devices and components exposed to harsh environments.
- Biocompatibility: NiTi alloys are biocompatible, making them safe for use in medical applications, particularly in implantable devices.
- Wear Resistance: The hardness and durability of NiTi alloys provide long-lasting wear resistance in protective thin films.
- Thermal Stability: NiTi films maintain their unique mechanical properties even at varying temperatures, ensuring consistent performance in diverse conditions.
-


- High Piezoelectric Coefficient: Enables efficient conversion of mechanical energy to electrical energy and vice versa.
- Stable Dielectric Properties: Ensures reliable performance in high-frequency applications.
- Customizable Compositions: Tailored Zr/Ti ratios to meet specific functional requirements.
- High Purity and Uniformity: Ensures consistent film deposition with minimal defects.
- Versatile Deposition: Compatible with RF and DC magnetron sputtering systems.
-


- High purity (≥99.9%).
- Excellent dielectric and optical properties.
- Uniform pellet size for precise thin-film deposition.
- Customizable sizes and specifications.
- High thermal stability and chemical resistance.
-


- High Purity: Typically ≥99.9% for superior film quality and performance
- Excellent Dielectric Properties: Ideal for high-frequency electronic applications
- Perovskite Structure: Ensures compatibility with complex oxide thin films
- Customizable: Available in various sizes and shapes to suit specific requirements
- Durability: High thermal and chemical stability for long-term use
-

- High Strength: TA15 powder provides superior mechanical strength, ensuring durability in high-stress environments.
- Excellent High-Temperature Resistance: With excellent thermal stability, it performs well in extreme temperature conditions.
- Superior Fatigue Resistance: Offers excellent resistance to fatigue, making it suitable for dynamic and cyclic loading applications.
- Corrosion Resistance: TA15 exhibits excellent corrosion resistance, especially in harsh environments such as marine and chemical industries.
- Weldability: The alloy offers good weldability, ensuring high-quality joins in critical structural components.
- Biocompatibility: Safe for medical applications, ensuring no harmful reactions with the body.
-

- Superior Strength-to-Weight Ratio: TC4 offers exceptional strength while maintaining a lightweight profile, making it ideal for demanding applications.
- Corrosion Resistance: Resistant to corrosion in various environments, particularly in harsh aerospace and marine conditions.
- Biocompatibility: Safe for medical and implant applications due to its non-toxic and biocompatible properties.
- Excellent Weldability: The alloy’s composition allows for good weldability, ensuring reliable performance in critical applications.
- High Durability: Resistant to wear and fatigue, making it suitable for long-lasting and high-performance products.