Showing 1–12 of 55 results
-

- High purity (≥99.99%).
- Outstanding dielectric and ferroelectric properties.
- Suitable for thin-film deposition techniques such as PVD.
- Uniform pellet size for consistent results in industrial and research settings.
- Custom sizes and packaging available.
-

- High Dielectric Constant: BaTiO₃ is known for its exceptionally high dielectric constant, making it ideal for capacitors and electro-optic applications.
- Ferroelectric and Piezoelectric Properties: The material exhibits both ferroelectric and piezoelectric behaviors, making it suitable for memory devices, sensors, and actuators.
- Excellent Thermal Stability: BaTiO₃ maintains good thermal stability, ensuring reliable performance in high-temperature environments.
- High Purity and Low Defects: BaTiO₃ sputtering targets are available in high-purity grades (up to 99.999%), ensuring low defect densities in the deposited thin films, which is crucial for advanced electronic applications.
- Custom Composition: Barium Titanate can be tailored with dopants to modify its electrical and thermal properties, optimizing performance for specific applications.
-


- High Dielectric Constant: BST has an exceptionally high dielectric constant, which can be adjusted by varying the Ba/Sr ratio, making it ideal for capacitive applications.
- Tunable Properties: The dielectric constant of BST is voltage-tunable, which is valuable in applications that require adjustable electronic properties, such as tunable filters or phased array antennas.
- Ferroelectric and Pyroelectric: BST exhibits both ferroelectric and pyroelectric properties, making it useful in memory devices and sensors.
- Thermal Stability: BST thin films maintain good stability under high temperatures, which is important for applications in electronics and microwave systems.
- Customizable Composition: The Ba/Sr ratio can be tailored to optimize specific properties, such as tunability, dielectric constant, and thermal stability, for different applications.
-


- Excellent Electrical and Thermal Conductivity: The copper base ensures superior electrical and thermal conductivity, making it ideal for electronic applications.
- Corrosion Resistance: The addition of nickel and titanium enhances the alloy’s resistance to corrosion, ensuring the longevity of thin films in harsh environments.
- High Strength and Durability: Titanium adds mechanical strength to the alloy, while nickel contributes to its hardness and wear resistance, making it suitable for demanding applications.
- Thermal Stability: CuNiTi alloys maintain their properties at elevated temperatures, making them ideal for high-temperature processes and environments.
- Customizable Properties: The ratio of copper, nickel, and titanium can be adjusted to tailor the alloy’s specific properties for a wide range of applications.
-

- High Electrical Conductivity: Copper’s exceptional conductivity is maintained while incorporating titanium’s benefits.
- Enhanced Corrosion Resistance: Titanium adds corrosion resistance, making the alloy suitable for harsh environments.
- Excellent Strength-to-Weight Ratio: The inclusion of titanium provides high strength while maintaining a low weight.
- Customizable Composition: Cu-Ti powder is available in various compositions to meet specific application requirements.
- Improved Durability: Suitable for high-stress, long-life applications due to the toughness of titanium.
-

- Balanced Alloy Composition: Combines Fe, Co, Ni, Al, Cu, and Ti for superior performance.
- High Strength and Durability: Exceptional mechanical properties for demanding environments.
- Thermal Stability: Operates efficiently under extreme temperature conditions.
- Corrosion Resistance: Excellent resistance to oxidation and environmental wear.
- Magnetic Properties: Suitable for applications requiring magnetic performance.
- Customizable Particle Sizes: Available in nano and micro scales for various uses.
-

- High Strength-to-Weight Ratio: Combines durability with lightweight characteristics.
- Corrosion Resistance: Excellent performance in harsh environments.
- Thermal Stability: Maintains properties at elevated temperatures.
- Versatile Applications: Compatible with additive manufacturing, coatings, and traditional metallurgy.
- Customizable Composition: Tailored to meet specific project requirements.
-

- High-Temperature Strength: Maintains excellent mechanical properties at elevated temperatures.
- Oxidation Resistance: Outstanding performance in oxidative environments.
- Thermal Stability: Stable microstructure under cyclic thermal conditions.
- Corrosion Resistance: Effective against chemical and environmental corrosion.
- Process Compatibility: Suitable for 3D printing, thermal spraying, and conventional metallurgy.
-

- High-Temperature Performance: Exceptional resistance to high temperatures, maintaining strength and stability.
- Corrosion and Oxidation Resistance: Designed for longevity in extreme environments, resistant to high-temperature oxidation and corrosion.
- Good Weldability: Excellent ability to be welded, ensuring high-quality and durable joints in complex components.
- Superior Durability: High fatigue resistance, making it ideal for components exposed to repeated stress and thermal cycling.
- Versatile Applications: Suitable for additive manufacturing, powder metallurgy, and casting processes for precision parts.
-

- High-Temperature Strength: Outstanding strength retention at elevated temperatures, ensuring long-term performance in extreme conditions.
- Excellent Corrosion and Oxidation Resistance: Designed to perform under high temperatures, with superior resistance to oxidation and corrosion in aggressive environments.
- Good Fabrication Characteristics: Offers excellent weldability, making it suitable for complex, high-precision components.
- Fatigue Resistance: Exceptional fatigue resistance, ideal for components exposed to cyclical thermal and mechanical stress.
- Versatile Manufacturing Options: Suitable for use in powder metallurgy, casting, and additive manufacturing processes.
-

- High-Temperature Strength: Retains superior mechanical properties at elevated temperatures, ensuring long-term reliability in harsh conditions.
- Oxidation and Corrosion Resistance: Exceptional resistance to oxidation and corrosion, even in extreme high-temperature environments.
- Excellent Castability: Ideal for casting applications due to its excellent moldability and resistance to thermal fatigue.
- Versatile Manufacturing: Compatible with additive manufacturing, powder metallurgy, and traditional casting methods.
- High-Precision Components: Suitable for applications that require high-performance parts with precision and minimal defects.
-

- High-Temperature Performance: Outstanding mechanical strength and creep resistance at elevated temperatures.
- Oxidation and Corrosion Resistance: Excellent resistance to oxidation and hot corrosion, ensuring long-term durability.
- Low Carbon Content: Reduces susceptibility to carbide precipitation, improving fatigue resistance.
- Exceptional Castability: Optimized for precision casting applications, with excellent mold-filling capabilities.
- Versatile Applications: Compatible with powder metallurgy and additive manufacturing for complex component production.