Showing 133–144 of 525 results
-
- High Purity: Copper pellets for evaporation are available in purity levels of 99.99% (4N) and above, ensuring that the thin films produced are of the highest quality and free from impurities.
- Uniformity: The spherical shape of copper pellets promotes even melting and vaporization during the deposition process, resulting in uniform thin films.
- Compatibility: Copper is compatible with a range of substrates, including glass, metals, and semiconductors, making it versatile for various thin film applications.
- High Conductivity: Copper films exhibit excellent electrical and thermal conductivity, enhancing performance in electronic and thermal management applications.
-
- High Electrical and Thermal Conductivity: Ideal for electronic and heat transfer applications.
- High Purity: Minimal impurities to ensure reliable performance.
- Customizable Particle Sizes: Available in nano, micro, and spherical forms for versatile uses.
- Corrosion Resistance: Resistant to oxidation and environmental factors.
- Superior Sintering Properties: Enhances bonding and structural strength in metallurgical applications.
-
Copper (Cu) is highly valued for its excellent electrical conductivity, thermal conductivity, and corrosion resistance, making it a key material in a variety of industries, including electronics, semiconductors, and energy. Copper (Cu) sputtering targets are essential for industries that require highly conductive, thermally efficient, and corrosion-resistant coatings, making them indispensable in electronics, semiconductors, energy, and decorative applications.
-
- High purity (≥99.9% or ≥99.99%).
- Exceptional chemical and thermal stability.
- Uniform pellet size for consistent performance.
- Customizable specifications to meet application requirements.
-
- Semiconductor Properties: Cu₂O is a p-type semiconductor with a direct bandgap, making it ideal for optoelectronic applications like solar cells and sensors.
- High Purity: High-purity Cu₂O sputtering targets are available to ensure efficient and precise deposition of thin films with minimal impurities.
- Environmentally Friendly: Cu₂O is a non-toxic, earth-abundant material, which makes it a sustainable choice for eco-friendly applications, especially in solar energy.
- Cost-effective: Compared to other materials, Cu₂O is affordable, making it attractive for large-scale applications such as photovoltaic cells.
-
- Semiconductor Properties: Cu₂S has p-type semiconductor properties, making it suitable for various electronic and photovoltaic applications.
- Good Optical Absorption: Cu₂S efficiently absorbs light, especially in the visible and near-infrared regions, making it ideal for solar cell applications.
- High Conductivity: Cu₂S exhibits good electrical conductivity, which is useful in applications that require conductive thin films.
- Thermal and Chemical Stability: Copper(I) Sulfide is thermally stable and resistant to certain chemicals, ensuring durability in harsh environments.
-
- High Optical Absorption: Cu2S exhibits strong absorption in the visible and near-infrared regions, making it effective for light-harvesting devices like solar cells.
- Good Semiconductor Properties: Copper(I) Sulfide has favorable electrical properties that make it a valuable material for semiconductors and related electronic devices.
- Thermal Stability: The material maintains stability at high evaporation temperatures, ensuring high-quality thin films in evaporation processes.
- High Purity: Available in high purity, ensuring minimal contamination and consistent thin film deposition for sensitive applications.
-
- High purity (≥99.99%).
- Outstanding thermoelectric and electrical properties.
- Stable crystalline structure.
- Uniform pellet size for consistent deposition outcomes.
- Tailored sizes and shapes available to meet application requirements.
-
- High Purity: ≥99.5% purity for optimal thin-film quality.
- Stable Composition: Ensures consistent performance during sputtering.
- Excellent Electrical Conductivity: Suitable for functional thin-film coatings.
- Thermal and Chemical Stability: Performs reliably under various sputtering conditions.
- Customizable: Adaptable to specific equipment and application requirements.
-
- Superior Electrical Conductivity: Ensures efficient current flow in electrical applications.
- High Thermal Stability: Performs reliably under extreme temperatures.
- Excellent Wear Resistance: Durable material ideal for high-stress environments.
- Customizable Compositions: Flexible Cu-Cr ratios to meet specific requirements.
- Versatile Particle Sizes: Available in nano and micrometer scales for diverse applications.
-
- High Electrical Conductivity: Retains copper’s excellent conductive properties.
- Mechanical Strength: Enhanced by the inclusion of iron, making it suitable for robust applications.
- Customizable Composition: Various Cu-Fe ratios tailored to specific industrial needs.
- Corrosion Resistance: Provides protection against oxidation and wear.
- Uniform Particle Size: Ensures consistency in manufacturing processes.
-
- High Solar Absorption Efficiency: CuIn alloy thin films exhibit excellent light absorption properties, contributing to the high efficiency of CIGS solar cells in converting solar energy into electricity.
- Bandgap Tunability: CuIn alloys enable tuning of the material’s bandgap to optimize its performance for specific photovoltaic applications.
- Lightweight and Flexible: CuIn-based thin-film solar panels are lightweight and flexible, making them suitable for both rigid and flexible solar panel designs.
- Thermal and Chemical Stability: The CuIn alloy demonstrates good thermal and chemical stability, ensuring durability in outdoor and harsh environmental conditions, which is essential for long-lasting solar cells.
- Customizable Composition: The ratio of copper to indium in the alloy can be adjusted to meet specific application requirements, ensuring tailored properties for different solar and electronic devices.