Showing 61–72 of 525 results
-
- High Refractive Index: Bi₂O₃ offers one of the highest refractive indices among common oxides, making it ideal for optical applications requiring high index materials.
- Photoconductivity: It exhibits strong photoconductivity, enabling applications in photoelectric and photonic devices.
- Wide Bandgap: Its wide bandgap makes it suitable for optoelectronic applications, particularly in UV-visible light applications.
- Good Stability: Bi₂O₃ has good thermal and chemical stability, ensuring durable and reliable coatings in harsh environments.
- High Ionic Conductivity: Useful in fuel cells and solid-state batteries due to its high oxygen ion conductivity at elevated temperatures.
-
- High Purity: 99.9% or greater, ensuring optimal performance in advanced applications.
- Versatile Applications: Used in electronics, ceramics, catalysis, and radiation shielding.
- Superior Optical Properties: High refractive index suitable for optical materials.
- Thermal Stability: Maintains performance under high-temperature conditions.
- Environmentally Friendly: Non-toxic and recyclable material.
-
- Semiconducting Properties: Bi₂S₃ is a narrow-band-gap semiconductor, which makes it efficient for applications requiring light absorption, such as solar cells and photodetectors.
- High Absorptivity: The material has high light absorption in the visible and near-infrared ranges, making it ideal for optoelectronic applications.
- Good Thermal Stability: Bi₂S₃ thin films are thermally stable, making them suitable for high-temperature applications such as thermoelectric devices.
- Non-toxic Alternative: Bismuth-based materials, including Bi₂S₃, are considered less toxic compared to heavy metal-based semiconductors, offering a more environmentally friendly option for various applications.
-
- High Purity: Available with ≥99.9% purity for precise applications.
- Exceptional Optical Properties: Narrow bandgap and strong absorption in visible and infrared spectra.
- Thermoelectric Efficiency: High thermoelectric performance for energy conversion applications.
- Chemical Stability: Resistant to oxidation and environmental degradation.
- Customizable Particle Sizes: Available in nano and micro scales to suit different requirements.
- Eco-friendly: Non-toxic and environmentally friendly material.
-
- High Conductivity: Bi₂S₃ films exhibit good electrical conductivity, making them ideal for use in electronic applications.
- Thermoelectric Efficiency: Known for its high thermoelectric performance, making it a key material in thermoelectric energy conversion devices.
- Optical Transparency: The material has desirable optical transparency in the visible spectrum, which is advantageous for optoelectronic applications.
- Chemical Stability: Bismuth Sulfide is stable under a wide range of chemical conditions, which ensures longevity and reliability in demanding environments.
- High Purity: Bi₂S₃ sputtering targets are available in high purity, ensuring the production of high-quality thin films with minimal contamination.
-
- High Thermoelectric Efficiency: Bi2Se3 has a high figure of merit (ZT), making it highly efficient for thermoelectric conversion.
- Topological Insulator Properties: It exhibits insulating behavior in its bulk with conductive surface states, which are resistant to backscattering and have potential in quantum computing.
- Good IR Absorption: Bi2Se3 is efficient in absorbing infrared radiation, making it useful in IR detectors and sensors.
- Stable at High Temperatures: It offers thermal stability and is suitable for evaporation at high temperatures, enabling consistent film formation.
- High Purity: Available in high purity, ensuring reliable and high-quality thin films for sensitive applications.
-
- High Purity: Available with ≥99.9% purity for optimal performance.
- Topological Insulator Properties: Enables applications in quantum computing and advanced electronics.
- Excellent Thermoelectric Efficiency: Ideal for energy harvesting and cooling systems.
- Customizable Particle Sizes: Nano and micro scales tailored to specific applications.
- Stable Composition: Chemically stable and resistant to degradation.
- Environmentally Friendly: Non-toxic and suitable for sustainable technologies.
-
- Topological Insulator Properties: Bi₂Se₃ is known for its topological insulator characteristics, where it supports surface conduction while acting as an insulator in its bulk, opening pathways for advanced quantum applications.
- Thermoelectric Efficiency: Bi₂Se₃ exhibits excellent thermoelectric performance with a high Seebeck coefficient, making it a critical material for thermoelectric energy conversion.
- Low Thermal Conductivity: Its low thermal conductivity helps in maximizing the thermoelectric efficiency in power generation and cooling applications.
- High IR Sensitivity: Bi₂Se₃’s sensitivity to infrared radiation makes it ideal for IR sensors and other optoelectronic devices.
-
- High purity (≥99.99%).
- Exceptional thermoelectric properties.
- High electrical and thermal conductivity.
- Uniform pellet size for consistent deposition and performance.
- Customizable sizes and packaging for various applications.
-
- High Purity: Available with ≥99.9% purity for optimal material properties.
- Outstanding Thermoelectric Performance: High Seebeck coefficient and low thermal conductivity.
- Layered Crystal Structure: Enables superior electrical and thermal characteristics.
- Customizable Particle Sizes: Nano (<100 nm) and micro (1–50 µm) sizes tailored to specific requirements.
- Stable and Durable: Chemically stable and resistant to environmental degradation.
- Environmentally Friendly: Non-toxic and suitable for sustainable applications.
-
- Multiferroic Properties: BiFeO₃ demonstrates both ferroelectric and antiferromagnetic properties, making it ideal for multifunctional devices.
- Room Temperature Functionality: One of the few multiferroic materials that operates effectively at room temperature, allowing for broader application in consumer electronics and industrial devices.
- Photovoltaic Effects: BiFeO₃ can be used to create thin films that convert light into electricity, opening avenues for energy harvesting and improving photovoltaic technologies.
- Customizable: The size, shape, and purity of BiFeO₃ sputtering targets can be tailored to meet specific requirements for various deposition techniques.
-
- Low Melting Point: Excellent for low-temperature soldering and thermal interface materials.
- Thermoelectric Properties: Exhibits promising performance in energy harvesting systems.
- Customizable Particle Size: Available in various sizes tailored to application needs.
- High Purity: Ensures reliable performance in precision applications.
- Environmentally Friendly: Contains no lead, making it suitable for eco-friendly applications.